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A major component of the noise in modern aeroengines is rotor–stator interaction
noise generated when the wake from the rotating fan impinges on a stator row
downstream. An analytically based model for the prediction of upstream-radiated
rotor–stator interaction noise is described, and includes the important effect of mean
swirling flow on both the rotor wake evolution and the acoustic response. The analytic
nature of the model allows for the inclusion of all wake harmonics and enables the
response at all blade passing frequencies to be determined.

An asymptotic analysis based on large rotor blade number is used to model
the evolution of the rotor wake downstream in a cylindrical duct carrying mean
swirling flow. The equations governing the axial evolution of the wake simplify to
three coupled first-order differential equations in the interior, while close to the duct
walls, a boundary-layer correction is required in order to satisfy the impermeability
conditions at the boundaries. At the stator location, the wake is used as input into
a local linear cascade model at each radius. The interaction of each wake harmonic
gives rise to acoustic waves of multiple azimuthal order which contribute to the
pressure field radiated back upstream. This enables the total acoustic response to be
determined in terms of cylindrical duct modes in mean swirling flow.

The effect of stator blade geometry (thickness, camber, angle of attack) and rotor–
stator separation on the total upstream-radiated noise is determined. Blade geometry
is shown to have a significant effect on the noise generated, and increasing the rotor–
stator gap can lead to large reductions in noise levels. Asymptotic treatment of the
acoustic field, based on large azimuthal order, is also considered and used to identify
the dominant contributions to the total pressure field resulting from the rotor–stator
interaction. The ray structure of the acoustic modes in swirl is shown to be very
different in some cases from that in uniform flow.

1. Introduction
Noise reduction is now one of the major issues in aeroengine design. In modern high-

bypass ratio turbofan systems much of the noise is generated by the fan, particularly
by the interaction between the fan-blade wakes and downstream vanes, as well as
by rotor–stator interactions in the compressor. At present, however, methods for
predicting the noise resulting from these interactions are of limited scope. Here, a
new analytically based method is developed which models important features such
as the three-dimensional duct geometry, swirling flow behind the fan, and stator-
blade geometry such as thickness and camber distributions and inclination to the
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oncoming flow. Analytical models of this type allow significant insight into the
physical mechanisms behind the noise-generation process and have practical value as
an efficient quantitative prediction scheme.

Previous analytical approaches to determining the sound radiation produced by
wake–stator interactions have considered the two-dimensional problem obtained by
unwrapping the duct at a fixed radius so that the stator becomes a linear cascade
of blades. Analyses in this type of framework have been carried out by Mani &
Horvay (1970), Koch (1971) and Peake (1992) using the Wiener–Hopf technique to
consider a single incident gust convected by a uniform flow. One obvious drawback
of this approach is that the three-dimensional effects of the cylindrical geometry and
the effects of swirl on the wake evolution cannot be captured. In this paper, the
approach will be to exploit the large blade number typical of modern systems so as
to allow the effects of swirl to be included, and to allow a better representation of
the three-dimensional geometry.

The general approach will be to determine the wake evolution downstream of
the fan in mean swirling flow using an asymptotic model based on large fan blade
number, and combine this with the cascade approach to determine the upstream
noise in the duct generated by the interaction of this wake with a downstream stator.
The model is therefore based on a quasi-three-dimensional approach which accounts
for the radial variation of the incident gust and reconstructs the resulting sound
field in the three-dimensional annular duct. The evolved wake will be fed locally
into the cascade model of Evers & Peake (2002) at each radius along the span. This
cascade model allows the effects of airfoil thickness and camber to be determined,
and builds on the work of Myers & Kerschen (1995, 1997) and Tsai & Kerschen
(1990) who developed an asymptotic analysis in the limit of large reduced frequency
for the case of a single airfoil, and Peake & Kerschen (1997) who predicted the noise
generated by a cascade of flat plates at non-zero angle of attack. The influence of
swirl on the local cascade response is included systematically. The asymptotic cascade
calculation is able to predict the upstream sound radiation (in terms of plane-wave
modes) produced by a single incident gust. In this paper, cascade calculations will
be used to provide the acoustic pressure field across the whole duct annulus just
upstream of the stator. This pressure data is then used as a boundary condition to
determine the amplitudes of the acoustic duct modes propagating upstream from the
stator.

Centrifugal and Coriolis forces induced by the mean swirl prevent any vortical
disturbances from being purely convected. Instead, they are ‘nearly’ convected and
undergo significant spatial distortion as they move downstream. The governing
equations for the unsteady vorticity and pressure are coupled by the presence
of mean vorticity and give rise to coupled acoustic–vorticity waves. Two families
exist, one which is pressure-dominated (nearly sonic) and well-defined by a modal
decomposition, and a second which is vorticity-dominated (nearly convected).
Golubev & Atassi (1996, 1998) showed that, for the vorticity-dominated waves, a
critical layer exists in the eigenmode spectrum, either side of which the eigenmodes
corresponding to the nearly convected modes cluster. As such, it is not generally
appropriate to describe a vortical disturbance in terms of modes, but instead as
the solution to an initial-value problem (Golubev & Atassi 2000a). The full system
of equations describing the initial-value problem consists of four coupled partial
differential equations. However, using our asymptotic analysis, only dominant terms
in the equations are retained; this reduces the system to three coupled first-order
differential equations in the flow interior, plus a boundary layer on the walls. This
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considerable simplification provides a very efficient method of computation for the
wake evolution.

Swirling flow can also have a significant effect on the propagation of sound, and
it is crucial to relate the sound waves predicted in the cascade formulation to sound
waves in annular-duct swirling flow. The presence of mean swirl can cut on or cut
off modes according to the sense of rotation with respect to the mean swirl. Modes
which are cut on in a non-swirling flow can be cut off by the presence of mean swirl if
they are co-rotating with the swirl (positive azimuthal order) and those which are cut
off in the absence of swirl may be cut on in the presence of mean swirl if they rotate
in the opposite sense to the mean swirl (negative azimuthal order). This becomes
important in the rotor–stator interaction problem where a single incident harmonic
wave can be reflected into acoustic modes of multiple azimuthal order (both positive
and negative). Asymptotic analysis of the acoustic field in swirling flow based on
large azimuthal order is also considered and used to determine rays paths in the duct
and to determine dominant contributions to the radiated sound field.

The linear cascade approximation at each radius has been used by Glegg (1999)
and Hanson (2001) to determine the scattered acoustics in a duct for the case
of unloaded blades and without accounting for the effects of swirl. Large blade-
number, or high-frequency, asymptotics have been applied to aspects of this problem
previously. Envia (1998) used a high-radial-order analysis to represent the duct
acoustic field in uniform flow. Golubev & Atassi (2000b) noted that the coupling
between the potential and vortical parts of the unsteady velocity in mean swirling
flow is weak at high frequencies. This led to an asymptotic expansion for the pressure-
dominated modes in powers of 1/B , with B the number of fan blades, so that
the vortical part could be neglected to leading order. Elhadidi & Atassi (2002,
2003) have also exploited this weak coupling at high frequencies to investigate the
effects of mean swirl and blade loading on interaction noise in annular ducts. In
particular, they have found that unsteady blade loading, the number of propagating
modes and sound pressure levels are dependent strongly on swirl and frequency,
underlining the importance of including swirl in any rotor–stator interaction noise-
prediction scheme. In this paper, a full asymptotic analysis is carried out to further
simplify the equations in this asymptotic limit. A numerical approach to the scattering
of disturbances by an annular cascade in swirling flow has been carried out by
Atassi et al. (2004).

The formulation of the model is presented as follows. The asymptotic model for
the wake evolution and sample results are presented in § 2. The interaction of the
fan wake with the cascade is described in § 3. Sample results showing the effects of
stator-blade geometry and rotor–stator separation on the resulting sound field are
presented in § 4. An asymptotic description of the acoustic field is given in § 5 and the
paper is summarized in § 6.

2. Asymptotic model for rotor-wake evolution
2.1. Evolution equations

The region downstream of the rotor is taken to be an axisymmetric annulus with
constant cross-section. Lengths are non-dimensionalized by the tip radius so that
the duct is defined in the region rh � r � 1. Velocities are non-dimensionalized with
respect to the stagnation speed of sound c∗

0, and subsequently all quantities used are
non-dimensional.
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The total velocity field downstream of the rotor is expressed in terms of a steady,
axisymmetric mean flow and a small-amplitude unsteady perturbation

U tot (x, r, θ, t) = U(r) + u′(x, r, θ, t), (1)

with (x, r, θ) cylindrical coordinates, the x-axis pointing downstream and x = 0 taken
to be the rotor trailing-edge plane. The steady mean flow is assumed to have the form

U = U (r)ex + W (r)eθ . (2)

The mean vorticity, ξ , for this mean flow profile is

ξ =
1

r

∂(rW )

∂r
ex − ∂U

∂r
eθ . (3)

The unsteady perturbation velocity is decomposed into vortical and potential parts,
according to Goldstein (1978), such that

u′ = u + ∇Φ, (4)

with the perturbation pressure expressed only in terms of the potential by

p′ = −ρ0

DΦ

Dt
, (5)

where D/Dt = ∂/∂t + U · ∇ is the convective derivative, and ρ0(r) is the mean density.
Where the amplitude of the perturbation is small compared to the mean flow, the

evolution of the unsteady disturbance is governed by the linearized Euler equations
which, when the mean entropy is uniform, can be written in the form

Du
Dt

+ (u · ∇)U = −ξ × ∇Φ, (6)

while the continuity equation becomes

D

Dt

1

c2
0

D

Dt
Φ − 1

ρ0

∇ · (ρ0∇)Φ =
1

ρ0

∇ · (ρ0u), (7)

where c0(r) is the local speed of sound.
The wake shed from the rotor blades gives rise to a vortical disturbance which

can be expressed as a superposition of harmonic waves. If the perturbation is
expressed in terms of modes, then, as shown by Golubev & Atassi (1996, 1998),
the eigenmodes produced by a mean vortical velocity are coupled acoustic–vorticity
modes. These modes are divided into two families, one of which is pressure-dominated
and corresponds to nearly sonic modes, and another of which is vorticity dominated
and corresponds to nearly convected modes. However, Golubev & Atassi (1996, 1998)
found that it is not practical to describe a vorticity-dominated disturbance using a
modal decomposition because the eigenmodes cluster near the edges of a critical layer
(with the centre corresponding to pure convection). This poses problems in resolving
the eigenmodes with sufficient accuracy and with the calculation of the associated
eigenvectors. Therefore, as in Golubev & Atassi (2000a) and Elhadidi et al. (2000), it
is more appropriate to determine the evolution of the vortical disturbance using an
initial-value analysis, where the wake profile at the rotor blade trailing edges provides
the initial condition for integration downstream.

The initial wake profile f (r, θ ′) (at x = 0) is aligned with the fan blades in the
rotating frame, where θ ′ is the polar angle measured in the rotating frame, and
appears as a velocity deficit behind each fan blade trailing edge. If the rotor has B
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blades, then the wake profile can be Fourier-decomposed into harmonics which are
integer multiples of the number of fan blades,

f (r, θ ′) =

∞∑
N=−∞

βNB(r)eiNBθ ′
. (8)

Typically, a fan has of the order of 20 rotor blades, so that the azimuthal mode
number, m = NB for integer N , can be treated as a large parameter.

If the fan rotates with a non-dimensional angular velocity ΩF then the disturbance
in the non-rotating frame is time dependent, and can be written in the form

u = a(x, r)eimk(r)x+imθ−iωt , (9)

Φ = φ(x, r)eimk(r)x+imθ−iωt , (10)

where the frequency ω =mΩF . The axial wavenumber is mk(r) and the radial
wavenumber is mxkr ≡ mx∂k/∂r . Since the disturbance is not purely convected, the
amplitudes depend on both radial and axial location.

The disturbance amplitudes are now expanded in terms of the large parameter m

as follows:

a = a0 +
a1

m
+ O(1/m2), φ = φ0 +

φ1

m
+ O(1/m2). (11)

An asymptotic analysis is carried out on the governing equations, (6) and (7), retaining
only the leading-order terms in each equation. Under these assumptions, (7) reduces
to {

Λ2

c2
0

− m2x2k2
r − m2

r2
− m2k2

}(
φ0 +

φ1

m

)
= O(m), (12)

where Λ =mkU − ω + mW/r . In order for (12) to hold for all values of r and x, we
must have

φ0 = 0. (13)

The leading-order terms from (6) are then

iΛa0 = O(1). (14)

In order for terms to balance, assuming a0 is O(1), we set Λ =0. This then defines
the axial wavenumber as

mk = (ω − mW/r)/U, (15)

which is the wavenumber of disturbances which are exactly convected. The evolution
of the gust amplitudes is determined by the equations at the next order, which, using
the notation a0 = (ax, ar, aθ ), are

U
∂ax

∂x
+

∂U

∂r
ar = −∂U

∂r
xkr iφ1, (16)

U
∂ar

∂x
− 2

W

r
aθ =

{
Γ

r
+ k

∂U

∂r

}
iφ1, (17)

U
∂aθ

∂x
+ Γ ar = −Γ xkr iφ1, (18){

x2k2
r +

1

r2
+ k2

}
φ1 = i

{
xkrar +

1

r
aθ + kax

}
, (19)

where Γ = (1/r)∂(rW )/∂r . Since no r-derivatives appear in these equations, r acts
solely as a parameter.
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Substitution for φ1 from (19) into (16)–(18) reduces the equations to three coupled
first-order differential equations which can be written in the form

∂a0

∂x
= M(x, r)a0, (20)

where M is a 3 × 3 matrix. These equations can be solved numerically given a
set of initial conditions at x = 0. The solution to (20), however, cannot satisfy the
impermeability condition of zero normal velocity at the duct walls because the
assumption that radial derivatives such as ∂ar/∂r are O(1) breaks down close to
the boundaries. In order to overcome this, a boundary-layer correction, which is
exponentially small at distances O(1) away from the walls, can be derived which
when superposed onto the existing solution enables the boundary conditions to be
satisfied. This effectively defines a hydrodynamic boundary layer of thickness O(1/m)
at each wall. In order to calculate this correction, a rescaling of the radius must be
carried out, and the analysis for this is described in the next subsection.

2.2. Boundary-layer correction

A rescaling of the radius is carried out at each boundary to define

R = ±|m|{r − rb} ∈ [0, ∞), (21)

where rb = rh, rt (=1), with the positive(negative) sign referring to the inner(outer)
radius. With this rescaling

∂

∂r
→ ±|m| ∂

∂R
. (22)

The mean flow and axial wavenumber are expanded about the boundary radius rb,
and the boundary-layer correction takes the form

[â0, φ̂1/m]rb
(x, R) exp(im{k(rb)x + (r − rb)kr (rb)x} + imθ − iωt), (23)

subject to the leading-order boundary conditions

â0, φ̂1 → 0 as R → ∞, (24)

ar (x, rb) + âr (x, 0) + ixkr (rb){φ1(x, rb) + φ̂1(x, 0)} ± ∂φ̂1

∂R
(x, 0) = 0. (25)

The leading-order equations governing the boundary-layer correction are, from (6)
and (7),

U
∂âx

∂x
+

∂U

∂r
âr = −∂U

∂r

{
xkr iφ̂1 ± ∂φ̂1

∂R

}
, (26)

U
∂âr

∂x
− 2

W

rb

âθ =

{
Γ

rb

+ k
∂U

∂r

}
iφ̂1, (27)

U
∂âθ

∂x
+ Γ âr = −Γ

{
xkr iφ̂1 ± ∂φ̂1

∂R

}
, (28)

∂2φ̂1

∂R2
± 2ixkr

∂φ̂1

∂R
− λ2φ̂1 = ∓∂âr

∂R
− ixkr âr − i

r
âθ − ikâx, (29)

where λ2 = x2k2
r + k2 + (1/r2) and k and the mean flow terms are evaluated at

r = rb. Given that the initial wake will satisfy the impermeability condition, the initial
conditions for the boundary-layer correction are â0(0, R) = φ̂(0, R) = 0.
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Both â0 and φ̂1 can be determined by solving a differential equation numerically
using an iterative process, treating R and x as parameters, respectively. First, the
homogeneous form of (29) is solved for each value of x subject to the boundary
conditions in (24) and (25). This then provides a first estimate for φ̂1 which is
subsequently used in the right-hand sides of (26)–(28). The initial-value problems
(26)–(28) are then solved at each value of r . A new estimate for φ̂1 is then determined
by solving the inhomogeneous form of (29). This process is repeated iteratively until
the solutions converge to a specified tolerance.

The full solution is then

u(x, r, θ, t) = {a0(x, r) exp(imk(r)x) + â0,rh
(x, R)Eh + â0,rt

(x, R)Et}exp(imθ − iωt),

(30)

Φ(x, r, θ, t) =
1

m
{φ1(x, r)exp(imk(r)x) + φ̂1,rh

(x, R)Eh + φ̂1,rt
(x, R)Et}exp(imθ − iωt),

(31)

where Eh,t = exp(im{k(rh,t )x + (r − rh,t )kr (rh,t )x}). The boundary-layer correction
terms decay exponentially away from the respective walls, which is to be expected
given that they are being driven by a subsonically convecting disturbance in the main
body of the flow.

For a potential mean flow with zero mean vorticity, both the general inner solution
and boundary-layer correction are simplified. The vorticity part becomes uncoupled
from the potential part (see Golubev & Atassi 2000a) and can be determined
analytically. The solution in this case is described in the Appendix.

2.3. Initial conditions

For simplicity, the initial wake distribution is described here by a series of Gaussian
curves centred on each blade trailing edge, so that the wake distribution is given by

f (r, θ ′) =

B∑
n=0

−D(r) exp

{
− r2

2S2

(
θ ′ − 2nπ

B

)2}
, (32)

where D is the depth of the wake and S is the standard deviation of the Gaussian
distribution, which determines the width of each blade wake. It is assumed that the
initial radial velocity perturbation is zero.

The wake velocity must be resolved into axial and azimuthal components for the
initial-value analysis, and the Kutta condition of smooth flow at each trailing edge
forces both the steady and unsteady flows to be aligned with the trailing edges.
Therefore, if the blades are aligned at an angle η to the axial flow at the trailing edge,

tan η =
(W − rΩF )

U
=

u′
θ (0, r)

u′
x(0, r)

. (33)

At the blade trailing edge, the gust is assumed to be purely vortical and, after taking
the azimuthal Fourier transform of (32), the Fourier coefficients βm(r) are assigned
(without loss of generality) solely to the vortical part of the disturbance such that

ax(0, r) = βm(r) cos η, aθ (0, r) = βm(r) sin η, ar (0, r) = 0, φ(0, r) = 0. (34)

Each harmonic is then propagated downstream according to the evolution equations
in § 2.1.
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Figure 1. Absolute value of perturbation velocity components for first harmonic (m = 26) at
x = 0.5. - - -, inner solution only; —, with boundary-layer correction.

2.4. Example

As an example, a uniform annulus with hub–tip ratio rh = 0.5 is taken to represent
the duct between the rotor trailing edge and the downstream stator vanes. The mean
velocity field is given by

U 2(r) = U 2
0 − 2

[
W 2

1 (r2 − 1) + 2W1W2 ln(r)
]
, (35)

W (r) = W1r + W2/r. (36)

where the axial velocity distribution has been obtained by assuming uniform stagna-
tion enthalpy. The values U0 = 0.4, W1 = 0.2 and W2 = 0.1 are used throughout. The
fan is assumed to have B = 26 blades and rotates with ΩF = 0.9. The initial wake
is taken to be of uniform depth (D = 1) with the width determined by S = 0.01 (at
blade midspan, this value of S is approximately 5% of the blade pitch). The Fourier
coefficients decay exponentially, so that only a finite number of harmonics need be
included in the subsequent calculations.

Each of the harmonics produced by the initial wake is propagated downstream as
solutions to the initial-value problem given by (20), together with the boundary-layer
correction. The effect of this correction is shown in figure 1, which compares solutions
for the three perturbation velocity components at x = 0.5, with and without the
boundary-layer solution. The effect of the boundary layer becomes more pronounced
the further the disturbance is carried downstream.

At several locations downstream, the wakes are reconstructed, and shown in figure 2.
This shows that the wakes become increasingly skewed as they propagate downstream
and the cause of this distortion is the development of the local radial wavenumber,
which increases linearly with downstream distance as mxkr , and the evolution of the
amplitudes through (20). The degree of distortion and sense of rotation of the wake
depend on the mean flow distribution and fan rotation rate. In this example, kr (r)
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Figure 2. Wake reconstruction showing values of the total perturbation velocity components
at several locations downstream. The fan is rotating in the anticlockwise direction.

is largest at the hub so that the wake at the hub becomes more distorted from its
original position than that at the tip. The skewing of the wakes governs the amount
of wake intersection with the downstream stator blades, and this is an important
factor in terms of noise generation which will be discussed later. Note also in figure 2
how a significant (mainly outward) radial velocity is generated, even though the wake
has zero radial component initially. The effect of the boundary-layer correction near
the walls is also apparent, where the wake thickness is significantly increased.

3. Rotor–wake stator interaction
Using the theory of § 2, the wake distribution is evolved downstream in the

cylindrical duct as far as just upstream of the stator-blade leading edges, located
at x = xs . The evolved wake is then used as input into a local cascade response
scheme in an inner region around the stator blades, and the noise generated locally in
the inner region is then matched back onto an upstream-propagating acoustic field in
the outer region in the duct. In order to do this, inner and outer coordinates need to
be defined and the mean flow calculated, and this is completed in the next subsection.

3.1. Inner cascade coordinates and mean flow

Given that the number of stator blades, V , is typically larger than the number of
blades in the fan, it is consistent to take V 	 1 and introduce a small parameter
ε = 2π/V corresponding to the angular separation between adjacent stator blades.
Axial and azimuthal inner coordinates, xi = (x − xs)/ε, θ i = θ/ε, can now be defined
(an inner radial coordinate will also be defined for the unsteady flow, but is not
needed here). The mean flow through the stator is composed of two components:
one corresponding to the axial and swirling flow generated by the fan upstream; and
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a second corresponding to the distortion generated by the stator-blade geometry. It
is supposed that the stator-blade camber, thickness and local angle of attack to the
far-upstream flow are small (ordering parameter δ), and it therefore follows that the
total mean velocity takes the form

U (r)ex + W (r)eθ + δu1(r, x
i, θ i). (37)

The third term in (37) corresponds to the effects of the stator row, and is necessarily
a function of the inner axial and azimuthal coordinates. The radial dependence of
this third term, however, is only through the outer radial coordinate. This follows if
it is assumed that the stator-blade geometry changes only on the outer scale, which
is entirely reasonable since the leading-edge spacing is linear in r , and changes in the
blade inclination and/or geometry in response to the radial variation in the incident
mean flow will also occur on the outer radial scale. The mean vorticity can now be
calculated from (37), and will necessarily be of the form ξ 0 + δξ 1, with the stator row
providing the O(δ) correction to the mean vorticity ξ 0 associated with the incident
axial and swirling flow. However, in order for δξ 1 to remain small, it is easy to show
that two restrictions must be placed on δu1: first, its radial component must be zero,
so that mean radial secondary flows generated by the stator appear only at O(δ2);
and secondly, that

1

r

∂u1x

∂θ i
=

∂u1θ

∂xi
. (38)

These two conditions together mean that the steady-flow perturbation induced by the
blade row, δu1, is given to O(δ) by irrotational thin airfoil theory in the surface of
constant r .

At a given radius r = r0, an inner radial coordinate centred on r0 and scaling on ε

is defined, so that the inner region itself is of size O(ε) in each of the axial, radial and
azimuthal directions. In this inner region, local linear cascade Cartesian coordinates
(X, Y, Z) are defined, which are orientated such that the X-axis is aligned with the
far upstream steady flow (i.e. with the O(1) velocity in (37)), and the Z-axis is radial.
Specifically,

X =

(
r∗
t

b∗

)
{(x − xs) cos γ + r0θ sin γ } /ε, (39)

Y =

(
r∗
t

b∗

)
{r0θ cos γ − (x − xs) sin γ } /ε, (40)

Z =

(
r∗
t

b∗

)
{r − r0} /ε, (41)

where the local blade semi-chord b∗ = b∗(r0) is used for non-dimensionalization and
tan γ =W ∗/U ∗. The steady-flow speed far upstream in the inner region, U ∗

∞(r0), is
then related to the duct mean flow speed by

U ∗
∞(r0) = [U ∗(r0)

2
+ W ∗(r0)

2
]1/2. (42)

Note that U ∗
∞(r0) depends on the outer radial coordinate, and note also that the

mean-flow distortion due to the blade row, δu1 decays upstream in the inner region,
so that in the local Cartesian coordinates the steady velocity approaches (U ∗

∞, 0, 0)
as X → −∞. The corresponding Mach number is M∞ = U ∗

∞/c∗
∞, where c∗

∞ is the
local sound speed. In the Cartesian (X, Y, Z) coordinates the leading-order mean
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Figure 3. Local cascade coordinate system (X∗, Y ∗), with cascade stagger angle given by
α∗ = tan−1(s∗/d∗).

vorticity is

ξ 0 =

(
0, − 1

U ∗
∞

∂U ∗
∞

∂Z
, 0

)
. (43)

Figure 3 shows the staggered cascade in physical space and its relation to the duct
geometry.

It has already been noted that the O(δ) steady disturbance flow generated by the
blade row is irrotational in surfaces of constant r , and has zero radial component.
The asymptotic cascade model of Evers & Peake (2002) for non-swirling mean flow
accounts for the blade geometry using thin-airfoil theory (δ 
 1), and it therefore
follows that their mean flow can be used in the current problem as well. Specifically,
in the inner region, the physical (X, Y, Z) coordinates are transformed to steady
potential-streamfunction coordinates (φ, ψ, Z), with

φ =
X∗

b∗ + δRe[F ] + O(δ2), ψ = β∞
Y ∗

b∗ + δIm[F ] + O(δ2), (44)

where δb∗U ∗
∞F (X, Y ) is the complex disturbance potential describing the two-

dimensional flow through the cascade at a given radius. This steady disturbance flow
is given by F =Fi/β∞, where Fi is the equivalent incompressible complex potential
and β∞ =

√
1 − M2

∞. Hence, the mean flow disturbance, δu1, induced by the presence
of the stator blades is calculated using thin-airfoil theory at each radius, with radial
variations appearing through the parametric dependence of U ∗

∞, b∗ and the cascade
geometry on the outer radial coordinate r0.

3.2. Unsteady flow far upstream in the inner region

In § 2, it was shown how the Fourier components of rotor wakes are distorted by the
mean swirl in the outer duct flow. The aim now is to consider how these components,
referred to here as gusts, are distorted as they propagate through the inner region
toward the stator blades. In the inner region, the total unsteady velocity is written

U ∗
∞(At, An, Az) exp(iK[X + knβ∞Y + k3Z − t]) as X → −∞, (45)
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where K =ω∗b∗/U ∗
∞ is the aerodynamic reduced frequency based on the total flow

speed onto the local blade. Here, the time t has been made non-dimensional using
the local time scale b∗/U ∗

∞. Using matched asymptotic expansions, (45) must match
the inner limit of the outer unsteady velocity, which is given by

c∗
0(Bx, Bθ , Br )(x, r0) exp(i[mk(r)x + mθ − ωt]), (46)

as x → xs , r → r0. Here, to leading order in m, the vector B is given as a sum of
contributions from the outer unsteady vortical velocity, the outer potential unsteady
velocity and the boundary-layer correction described in § 2.2 (i.e. B follows from
u + ∇Φ , with u and Φ given by (30) and (31)). Matching the amplitudes in (45) and
(46) gives

At = Q(r0)(Bx cos γ + Bθ sin γ ), An = Q(r0)(Bθ cos γ − Bx sin γ ), Az = Q(r0)Br,

(47)

where

Q(r0) =
1

M∞c0

exp(imk(r0)xs), tan γ = W/U, (48)

and c0 = c∗
∞/c∗

0. Matching the phases in (45) and (46) determines the cascade
wavenumbers

K =
ω

M∞c0

(
b∗

r∗
t

)
, β∞kn =

m

Kr cos γ

(
b∗

r∗
t

)
− tan γ, k3 =

kr

K

(
b∗

r∗
t

)
. (49)

It is important to note that (45) describes a three-dimensional gust, which accounts
for the fast variation along the blade radius through the phase term k3Z, and for the
local variation through the dependence of the various parameters (b∗, M∞, B, . . .) on
r0.

In the inner region, the blade interaction problem has been reduced to an equivalent
gust-cascade problem. The input into this cascade problem is in the form of the gust
(45) at upstream infinity, in which the amplitude vector A and the radial wavenumber
k3 have been determined by matching with the outer duct flow upstream. The cascade
problem will be completed using asymptotic analysis in the limit of high local
reduced frequency, K 	 1, and since ω =mΩF , the assumptions of large K and m

are equivalent. (Note that application of large K means that the cascade solidity is
large.) The preferred limit Kδ = O(1) is assumed.

3.3. Distortion of incident unsteady flow in the inner region

This section deals with how the wake field incident from upstream is distorted as
it propagates in the inner region. The unsteady velocity field corresponding to the
disturbance imposed from upstream is split into vortical and potential parts, as in § 2,
with

u = (A0 + δ A1)exp(iK(p0 + δp1) − iKt), (50)

Φ =
δ

K
Φ1exp(iK(p0 + δp1) − iKt). (51)

Here, A0 corresponds exactly to the amplitude vector given in (47), and is therefore
read straight from the solution of the outer problem, i.e. the field which would have
been present in the absence of the stator blades. The distorting effect of the stator
blades appears in the O(δ) correction to the amplitude, δ A1. Since the potential field
associated with the wake disturbance in the outer region has been absorbed into
the term A0, the additional potential induced by the interaction between the mean
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vortical flow and δ A1 must be of size O(δ/K); the δ factor corresponding to size of
the mean-flow distortion and the 1/K corresponding to the scaling expected for the
potential of a nearly convected disturbance (cf. equations (11) and (13) in the outer
region). In (50) and (51), the phase of the disturbances comprises a leading-order
term Kp0, corresponding to propagation through uniform flow, and the correction
term Kδp1 arising from the distorting effect of the cascade non-uniform mean flow.

The unsteady flow in the inner region is governed by the coupled vorticity and
wave equations (6) and (7) written in terms of the inner (X, Y, Z) coordinates.
However, rather than solving these equations in (X, Y, Z), we will follow Myers &
Kerschen (1995) and work throughout in the steady cascade potential-streamfunction
coordinates φ, ψ together with the spanwise coordinate Z. Substitution of the velocity
field (50) and (51) into the vorticity equation (6), and then considering just the O(K)
terms gives the equation

−1 + (1 + δq)2
∂

∂φ
(p0 + δp1) = 0, (52)

where U ∗
∞δq is the perturbation to the uniform mean flow induced by the cascade.

Equation (52) is solved for the phase in the form

p0 + δp1 = φ + knψ + k3Z + δg(φ, ψ) − δ(Re[F (−∞)] + knIm[F (−∞)]), (53)

where the term knψ + k3Z and the terms involving F (−∞) have arisen as constants
of integration, and have been chosen so as to match with the far-upstream form of
the incident velocity (45). Furthermore,

g(φ, ψ) = −
∫ φ

−∞
2q(φ′, ψ) dφ′ (54)

is Lighthill’s drift function. This result for the phase compares exactly with the result
of Myers & Kerschen (1995, equations (2.5b, c)) in the absence of mean vorticity.

The unknown amplitude vectors in (50) are now determined. Introducing the
notation A0 = (A(0)

t , A(0)
n , A(0)

z ) and A1 = (A(1)
t , A(1)

n , A(1)
z ) for the components in the φ,

ψ and Z-directions, and substituting (51) into the coupled wave equation (7) yields
at O(K) the amplitude of the potential field

Φ1 =
i

λ2

[
A

(1)
t + β∞knA

(1)
n + k3A

(1)
z

]
+

i

λ2

[
−qA

(0)
t + β∞

∂g

∂ψ
A(0)

n + β3
∞qknA

(0)
n

]
, (55)

where λ2 = 1 + β2
∞k2

n + k2
3 . This potential field corresponds to a hydrodynamic field

which is generated by the volume-source term on the right-hand side of (7), with
phase which convects with the local mean flow (see also Myers & Kerschen 1995,
equation (3.28)). The equations governing δ A1 are obtained by substituting (50) and
(55) into the coupled vorticity equation (6), and taking O(1) terms to yield the
transport equation

∂A
(1)
t

∂φ
= −A

(0)
t

∂q

∂φ
− ζk3A

(1)
t − ζk2

3A
(1)
z − ζk3η, (56)

∂A(1)
n

∂φ
= A(0)

n β2
∞

∂q

∂φ
− 2β∞A

(0)
t

∂q

∂ψ
, (57)

∂A(1)
z

∂φ
= ζA

(1)
t + ζk3A

(1)
z + ζη, (58)
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where

ζ =
1

λ2U ∗
∞

∂U ∗
∞

∂Z
, η(φ, ψ) = β∞knA

(1)
n − qA

(0)
t + β∞

∂g

∂ψ
A(0)

n + β3
∞knqA(0)

n . (59)

The solution to (56)–(58) is obtained by integrating (57) directly to determine A(1)
n .

This is then used to simplify (56) and (57). The result is that

A
(1)
t = −A

(0)
t q − ζk3

∫ φ

−∞
η(φ′) dφ′ + ζk3A

(0)
t

∫ φ

−∞
q(φ′) dφ′, (60)

A(1)
n = β∞A

(0)
t

∂g

∂ψ
+ A(0)

n β2
∞q, (61)

A(1)
z = ζ

∫ φ

−∞
η(φ′) dφ′ − ζA

(0)
t

∫ φ

−∞
q(φ′) dφ′. (62)

At this point, it is worth pausing to consider the effect the mean vorticity has had
on the results. If ζ = 0, then it is easy to see that the expressions for the amplitude
correction δ A1 are significantly simplified, and in fact agree exactly with what has
been derived previously by Myers & Kerschen (1995) in irrotational mean flow. The
effect of ζ �= 0 is to introduce the coupling term between the vortical and potential
unsteady flows on the right-hand side of (6), and in the analysis this manifests itself
as the term Φ1 producing the terms proportional to ζ on the right-hand sides of
(56)–(58). Physically, this means that the O(δ) potential field carried along by the
nearly convected gust stretches the local mean vorticity so as to produce an extra
component of unsteady vortical velocity.

3.4. Gust–leading-edge interaction

The upstream acoustic field produced when the distorted gust described in § 3.3
interacts with just one of the airfoils is now determined. In the presence of mean
vorticity, the upstream-radiated velocity field from the airfoil consists of pressure-
dominated acoustic–vorticity waves, and is expressed in terms of a potential part G

and a vortical part C as

u′ = ∇G + C. (63)

A modified unsteady velocity potential, h(φ, ψ), and a modified vortical part of the
unsteady velocity, c(φ, ψ), are introduced, such that

[G, C] = [h(φ, ψ), c(φ, ψ)]exp
(
iK

[
k3Z − t − M2

∞φ/β2
∞
])

exp
(
δM2

∞q
)
. (64)

Myers & Kerschen (1995) and Peake & Kerschen (1997) consider Goldstein’s wave
equation, (7), in the limit of small δ. In the presence of mean vorticity, this equation
becomes

L0(h) + δL1(h) = δKS(φ, ψ)eiKΩ + KT1(c) + KδT2(c), (65)

where L0, L1 and Ω are the same as in equations (2.4c), (2.4d) and (2.5b) of Myers &
Kerschen (1995). The effects of the mean vorticity lead to modification of the source
term, S(φ, ψ), which is associated with the interaction between the incoming incident
gust and the non-uniform mean flow. Specifically,

S(φ, ψ) =
2

β2
∞

{
i
(
A

(0)
t − knA

(0)
n β3

∞
)
q + i

(
knA

(0)
t β2

∞ + A(0)
n β∞

)
µ

+
1

K

[
M2

∞A
(0)
t

∂q

∂φ
+ M2

∞β∞A(0)
n

∂q

∂ψ
+

ζk3

2

(
η − A

(0)
t q

)]}
, (66)
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where the quantity β∞δµ is the perturbation flow angle in the physical plane. In (66),
the term involving ζ corresponds to the effect of mean vorticity (when ζ = 0, equation
(66) reduces exactly to (2.5a) of Myers & Kerschen (1995) for irrotational mean flow).
Furthermore, the presence of mean vorticity leads to the second and third source
terms on the right-hand side of (65), corresponding to the interaction between the
vortical part of the outgoing acoustic field and the non-uniform mean flow. These
source terms are given by

T1(c) = − 1

β2
∞

{
− iM2

∞
β2

∞
ct + ik3cz +

1

K

[
∂ct

∂φ
+ β∞

∂cn

∂ψ

]}
, (67)

T2(c) = − 1

β2
∞

{
− iM2

∞
β2

∞
qct +

1

K

[
−β2

∞
∂q

∂φ
ct + β3

∞q
∂cn

∂ψ
− β∞

∂q

∂ψ
cn

]}
. (68)

With the unsteady velocity decomposition (63), the zero normal velocity boundary
condition on the blade surface, ψ = 0, becomes

∂h

∂ψ
+ cn + δM2

∞
∂q

∂ψ
h = −

[
A(0)

n

β∞

(
1 − δM2

∞q
)

− δ2A
(0)
t µ

]
eiKΩ, (69)

which is to be compared to (2.6) of Myers & Kerschen (1995). The additional feature
here is the term cn, corresponding to the blade upwash of the vortical part of the
velocity associated with the upstream-propagating acoustic wave.

Following Myers & Kerschen (1995), a local leading-edge region, scaling on the gust
wavelength, around the blade leading edge is now considered. In this local leading-
edge region, the leading-edge coordinates (Φ, Ψ ) ≡ k(φ, ψ) are introduced, and the
wave equation (65) is transformed to

K2
{
L0(h) + δK1/2L1(h)

}
= δK3/2Ŝ(Φ, Ψ )eiKΩ + KT̂ 1(c) + δK3/2T̂ 2(c), (70)

where the circumflex indicates that (1/K)∂/∂φ terms have become ∂/∂Φ , etc. The
fractional power K3/2 multiplying Ŝ has arisen because in the blade leading-edge
region, q has a square-root singularity, so that the mean-flow perturbation speed,
δq , is O(δK1/2). In the analysis of Myers & Kerschen (1995) the modified unsteady
potential in the leading-edge region is expanded as

h =
1

K

[
H0 + δK1/2(H1 + H2 + H3) + O(δ2K, δ)

]
, (71)

where the terms H0−3 account for different physical effects near the leading edge, as
described in Myers & Kerschen (1995, 1997) and Tsai & Kerschen (1990). In the
presence of mean vorticity, the additional expansion of the unsteady vortical velocity
associated with h must be introduced, namely

c =
1

K

[
c0 + δK1/2c1 + O(δ2K, δ)

]
. (72)

This choice for the scaling of c ensures that the upstream-radiation is pressure-
dominated. Substitution into (70) yields the equation

L0(H0) + δK1/2{L0(H1 + H2 + H3) + L1(H0)} = δK1/2Ŝ(Φ, Ψ ) eiKΩ

+
1

K
T̂ 1

(
c0 + δK1/2c1

)
+ δK−1/2T̂ 2

(
c0 + δK1/2c1

)
, (73)
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and the boundary condition (69) transforms to

∂H0

∂Ψ
+ δK1/2 ∂

∂Ψ
{H1 + H2 + H3} + δM2

∞
∂q

∂Ψ
H0 +

cn

K

= −
[
A(0)

n

β∞

(
1 − δM2

∞q
)

− δ2A
(0)
t µ

]
eiKΩ. (74)

In our asymptotic analysis of the noise generation, and following the approach
of Myers & Kerschen (1995), perturbation terms of size O(1) and O(δK1/2) in (73)
and (74) are retained, while terms of size O(K−1), O(δ), O(δ2K) and O(δK−1/2) are
neglected. Therefore, all the terms involving the vortical velocity associated with the
outgoing acoustic field, c, are neglected in (73) and (74), so that h becomes decoupled
from c. In addition, the contribution to Ŝ(Φ, Ψ ) due to the presence of mean vorticity,
i.e. the term in (66) which is proportional to ζ , is also neglected. This point follows
because the ζ -independent terms in (66) are O(K1/2) in the leading-edge region (since
q, µ =O(K1/2) there). In contrast, the ζ -dependent term in (66) is O(K−1/2). Hence,
the ζ -dependent source term appears as a term of size O(δK−1/2) on the right-hand
side of (73), and is therefore neglected.

It can now be seen that the leading-edge noise-generation problem is identical to the
sound-generation problem studied in Myers & Kerschen (1995, 1997) and Tsai &
Kerschen (1990), since the effects of the presence of the mean vorticity have been seen
to be confined to terms which are neglected to the asymptotic order considered. The
only point still to be checked is the effect of the mean vorticity on the acoustic waves
as they propagate away from the airfoil. A leading-edge ray solution in the form

hl = K−3/2Al(r, θ)eiKσ (r,θ) + O
(
K−5/2

)
, (75)

al = K−3/2bl(r, θ)eiKσ (r,θ) + O
(
K−5/2

)
, (76)

is sought, where (r, θ ) are the polar form of the coordinates (φ, ψ). The expression
for the modified unsteady velocity potential hl is exactly the leading-edge ray field
used by Myers & Kerschen (1995, equation (3.30)), while the expression for al is the
corresponding vortical part of the unsteady velocity. In principle, al is coupled to hl

via the presence of mean vorticity. However, substituting (75) and (76) into the wave
equation (7) leads to the same eikonal equation for the phase σ as found by Myers &
Kerschen (1995, equation (3.31)). However, the transport equation for the amplitudes
is modified, and becomes

∂σ

∂r

∂Al

∂r
+

1

r

∂σ

∂θ

∂Al

∂θ
+

Al

2

[
1

r

∂

∂r

(
r
∂σ

∂r

)
+

1

r2

∂2σ

∂θ2

]
+ O(δ)

= − 1

2β2
∞

[(
−M2

∞
β2

∞
+ sin θ

∂σ

∂r
+

cos θ

r

∂σ

∂θ

)
bφ + k3bz

+ β∞

(
cos θ

∂σ

∂r
− sin θ

r

∂σ

∂θ

)
bψ

]
+ O(δ). (77)

This is to be compared with equation (3.32) of Myers & Kerschen (1995), in which
the vortical terms involving bl are absent. Substituting (75) and (76) into the vorticity
equation (6) and taking just the leading-order terms yields(

−1 + sin θ
∂σ

∂r
− M2

∞
β2

∞

)
bφ =

1

U ∗
∞

∂U ∗
∞

∂Z
k3Al, (78)(

−1 + sin θ
∂σ

∂r
− M2

∞
β2

∞

)
bψ = 0, (79)
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−1 + sin θ

∂σ

∂r
− M2

∞
β2

∞

)
bz = − 1

U ∗
∞

∂U ∗
∞

∂Z

(
−M2

∞
β2

∞
+ sin θ

∂σ

∂r

)
Al. (80)

From the eikonal equation, it follows that ∂σ/∂θ = O(δ) (see Myers & Kerschen 1995,
equation (3.34)), and substituting for bφ, bψ and bz from (78)–(80) into (77) then
reduces the right-hand side of (77) to zero, and recovers the transport equation (3.32)
of Myers & Kerschen (1995). Thus, the outer leading-edge acoustic potential becomes
decoupled from the vortical part of the velocity field, so that, to the asymptotic order
considered, the local mean vorticity has no effect on the propagation of acoustic
waves away from the leading edge.

In summary, the effects of the mean vorticity do not appear at the relative orders
considered in the asymptotic analysis; neither in the sound generation in the blade
leading-edge region, nor in the propagation of acoustic waves away from the leading
edge within the inner region. Therefore, the results obtained by Peake & Kerschen
(1997) and Evers & Peake (2002) for the gust–cascade interaction in the absence of
swirl can be applied here, and this will be described in the next subsection.

3.5. Radiation produced by the cascade interaction

So far the acoustic response of a single blade has been calculated. In the case of
zero swirl, Peake & Kerschen (1997) and Evers & Peake (2002) have shown how the
single-blade response can be used to construct the total radiated field upstream of the
cascade. Since it has been shown, at the end of the last subsection, that the presence
of mean vorticity does not affect the propagation of acoustic waves in the inner region
upstream of the cascade to the asymptotic order considered, the zero-swirl results can
be used here. The acoustic potential can be expressed in terms of a superposition of
radiating plane-wave modes in the form

h(φ, ψ) ∼ Q(r)exp(−iKδ(Re[F (−∞)] + knIm[F (−∞)]))

nq∑
n=nr

Rn(r) exp(−iσnφ − iηnψ),

(81)
where

σn =
{
(2nπ − σ ′) sin α + cosα[(∆Kw)2 − (2nπ − σ ′)2]1/2

}/
∆, (82)

ηn =
{
(2nπ − σ ′) cos α − sin α[(∆Kw)2 − (2nπ − σ ′)2]1/2

}/
∆, (83)

with

α = tan−1(β∞ tan α∗), ∆ =
(
d∗2

+ β2
∞s∗2)1/2

/b∗, (84)

and

σ ′ =
K(d∗ + β∞kns

∗)

b∗ +
KM2

∞d∗

b∗β2
∞

. (85)

The quantity Kw is the acoustic reduced frequency with

w2 =
(
M∞/β2

∞
)2 − (k3/β∞)2. (86)

Expressions for the modal coefficients Rn and details of the steady-flow calculation
can be found in Evers & Peake (2002). The values nr and nq are the lowest and highest
values of n such that the square root in (82) and (83) is real. Each element in the sum
then corresponds to a forward-radiated plane-wave mode propagating in a different
direction away from the cascade. The case where the quantity in the square root
is zero corresponds precisely to waves propagating along the front face of the cascade.
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The dimensional acoustic pressure field, p∗
c , associated with the sound radiation

upstream of the cascade is defined in Peake & Kerschen (1997) as

p∗
c = −ρ∗

∞U ∗
∞

[
∂h

∂φ
− i

K

β2
∞

h

]
exp

[(
iK

[
k3Z − t − M2

∞φ
/
β2

∞
])

, (87)

so that the far-upstream limit of the acoustic pressure in the inner region can easily
be recovered from (81).

3.6. Radiation upstream of the stator row in the outer region

The final step in the calculation is to match the radiation propagating ahead of the
cascade in the inner region, given in (81), onto an upstream-propagating sound field
in the cylindrical duct. The unsteady pressure field in the duct can be written as a
modal expansion in the form

p∗(x, r, θ, t) = ρ∗
0c

∗
0
2

∞∑
m̂=−∞

∞∑
s=1

p̂m̂sLm̂s(r) exp{i[k−
m̂sx + m̂θ − ωt]}, (88)

where k−
m̂s and Lm̂s are the eigenvalues and eigenfunctions, respectively, corresponding

to nearly sonic modes propagating upstream in mean swirling duct flow. These
eigenmodes are pressure dominated, and are analogous to acoustic modes in non-
swirling mean flow. For a given frequency and azimuthal order, there are a finite
number of propagating (cut-on) modes and an infinite number of evanescent (cut-off)
modes. In order to determine the eigenvalues and eigenfunctions, the coupled acoustic–
vorticity equations, (6), (7), governing the flow must be solved numerically. This is
carried out using a Chebyshev spectral collocation method as described in Cooper &
Peake (2001).

In order to calculate the upstream noise in the duct, the unknown duct azimuthal
orders, m̂, and the pressure coefficients p̂m̂s in (88) must be determined. The pressure
field in (87) is expressed in terms of the outer duct coordinates and matched to the
inner limit of the outer pressure field (i.e. the limit of (88) as x → xs). By comparing
powers of eiθ , the azimuthal mode number m̂ for the acoustic field is found to be
related to the cascade wave index n by

m̂ = m − nV, (89)

so that each plane wave mode (n) produced by the cascade corresponds to an
azimuthal order (m̂) in the duct, and only a finite number of azimuthal orders appear
far upstream in the duct. Equation (89) is the Tyler–Sofrin (1962) condition. The
remaining terms in the pressure fields give the following equation for the modal
amplitudes:

∞∑
s=1

p̂m̂sLm̂s(r) exp{ik−
m̂sxs} = iρ0M∞c0exp(imk(r)xs)exp(−iKδ(Re[F (−∞)]

+ knIm[F (−∞)]))Rn(r)

[
K

β2
∞

+ σn

]
exp(−i

(
σn + K

M2
∞

β2
∞

)
δRe[F (−∞)]

− iηnδIm[F (−∞)]) ≡ fn(r), (90)

which can be solved for each value of n. The radial dependence of the cascade
radiation is accounted for by summing over all duct radial orders, s. The duct modal
amplitudes p̂m̂s can be determined by multiplying (90) by rL†

m̂s(r) and integrating
across the duct radius (with † denoting the complex conjugate). This generates a
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matrix equation of the form

HP = Q, (91)

where P = [p̂m̂1 exp(ik−
m̂1xs), p̂m̂2 exp(ik−

m̂2xs), . . .] and

Hqs =

∫ rt

rh

L†
m̂q(r)Lm̂s(r)r dr, Qq =

∫ rt

rh

L†
m̂q(r)fn(r)r dr. (92)

In order to solve (91), the system of equations must be truncated, and this is carried
out by including all upstream propagating cut-on duct modes and a sufficient number
of cut-off modes to ensure convergence. (Note that, in the absence of swirl, the
eigenfunctions are orthogonal, rendering H diagonal and the modal amplitudes can
be extracted exactly.) Ultimately, only the modal amplitudes associated with the duct
cut-on modes are of interest since it is these which contribute to the acoustic field far
upstream.

In summary, the gust–cascade interaction determines the amplitudes of the waves
which can propagate away from the cascade at each radius. These cut-on waves are
then used to reconstruct the acoustic field in the three-dimensional swirling duct flow
upstream of the stator. The matching of pressure fields between inner and outer
regions handles the way in which the cascade cut-on condition differs from that in an
annulus. The cascade cut-on condition determines which cascade modes propagate
just upstream of the cascade, while the annular cut-on condition determines which
parts of the radiation escaping the cascade propagate upstream in three dimensions.

4. Results
Each harmonic of the initial wake gives rise to an incident gust with frequency

ω =mΩF and corresponds to a blade passing frequency (or BPF) tone. All results will
be expressed in terms of these frequencies. At each frequency, the upstream-radiated
sound field produced by the wake-stator interaction is comprised of a number of
azimuthal orders, m̂, determined by (89). A measure of the radiated sound at each
BPF is the total cross-sectionally averaged pressure field given by

Pm =

∫ 2π

0

∫ 1

rh

|pm(x, r, θ)|2r dr dθ, (93)

= 2π
∞∑

m̂=−∞

s ′∑
s=1

s ′∑
t=1

p̂m̂s p̂
†
m̂texp(i(k−

m̂s − k−
m̂t )x)

∫ 1

rh

Lm̂s(r)L†
m̂t (r)r dr, (94)

where pm is the local pressure at frequency mΩF and s ′ is the number of cut-on
modes for each value of m̂.

The same mean flow and initial wake conditions as used in § 2.4 were used to
generate subsequent results. The number of stator vanes was taken to be V = 50, each
vane has a profile given by a NACA four-digit section and the ratio of length scales
b∗/r∗

t = 0.1.
First, the effect of blade geometry on the upstream-radiated noise is assessed. In

figure 4, uncambered NACA 00XX blades with varying angle of attack for a range
of thicknesses are considered, where XX denotes the maximum blade thickness as
a percentage of the blade chord. The rotor–stator spacing is taken to be xs =0.5.
Significant variation is observed both with blade thickness and angle of attack. The
noise field is dominated by 2BPF results, even though the largest amplitude of the
incident gust corresponds to the first harmonic (1BPF). This is partly because only
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Figure 4. Variation of total pressure field, Pm(x = 0), with blade thickness at different angles
of attack, l∞, where xs = 0.5 and blade camber = 0. (a) l∞ = 0◦, (b) l∞ = 4◦, (c) l∞ =8◦.

one plane-wave mode is cut on by the cascade interaction at the first harmonic
frequency, whereas the second harmonic consists of two plane-wave modes which
are cut on over a larger proportion of the duct radius. In general, there is a greater
tendency for cascade modes to be cut on near the tip than the hub, and more modes
become cut on at higher frequencies. The acoustic response is then dependent on
both the amplitude of the incident wave and the extent to which cascade modes
are cut on by interaction with the stator. These results show that the ability to
investigate a large number of blade-passing frequencies with this model enables the
largest contributions to the sound field to be identified. Figure 5 shows the effects
of camber for differing angles of attack, for a blade thickness of 12%, again with
xs =0.5. There is strong variation with camber for the first two harmonics where
the results show a well-defined minimum in each case. A minimum response is also
evident for all harmonics in the thickness results of figure 4. The cascade response is
governed largely by the factor Rn(r) in (81) and is comprised of a number of terms
which describe the generation of upstream-radiated acoustic waves. The influence of
blade geometry is contained in directivity functions associated with specific aspects of
the geometry. In addition to this, there are several phase terms which account for the
distortion of waves close to the cascade and the reflection of waves by other blade
surfaces before scattering away from the cascade. However, the minimum response
does not appear to be attributable to one particular geometry term; rather it would
appear to be a complicated interaction of all these effects which leads to the overall
response. Elhadidi & Atassi (2003) have also found that sound levels can be affected
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Figure 5. Variation of total pressure field, Pm(x = 0), with blade camber at different angles
of attack, l∞, where xs = 0.5 and blade thickness = 12%. (a) l∞ = 0◦, (b) l∞ = 4◦, (c) l∞ = 8◦.

significantly by blade design and in particular that increasing blade camber generally
leads to an increase in the upstream acoustic pressure.

The impact of rotor–stator gap on the noise generated is demonstrated in figure 6.
This shows that each harmonic no longer contributes to the total pressure field beyond
a critical separation, and this is related directly to the plane-wave modes from the cas-
cade interaction becoming cut off. The plane wave cut-on condition specifies that the
term inside the square root in (82) and (83) must be positive, and the only parameter
which varies with xs in this condition is w2 through its dependence on the spanwise
wavenumber k3. Therefore, when k3 (equivalently xs) exceeds a critical value, the
associated plane-wave mode becomes cut off, and this effect is demonstrated in figure 6
by sharp changes in gradient. The inset in figure 6 shows contours of w as a function of
radius and rotor–stator separation (for clarity, only contours where w2 > 0 are shown).
This shows how the cascade cut-on region shrinks as the rotor–stator gap is increased
and that no noise is radiated upstream beyond xs ≈ 0.71, where w2 < 0 across the
whole annulus. Also plotted is the specific cut-on boundary determined by the cascade
response for the BPF tone. This type of calculation demonstrates general trends very
effectively and can qualitatively identify optimum conditions for reducing noise levels.
The effect of increasing the rotor–stator separation on the radiated noise is related
directly to the development of the radial wavenumber as the wake moves downstream.
As the rotor–stator gap is increased, the wake becomes more skewed and the number
of wake intersections with each stator vane increases. The correlation between number
of wake intersections and noise levels has been observed by Envia & Nallasamy (1999),
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Figure 7. (a) Proportion of span for which the cascade radiation modes n= 1 and n= 2,
generated at 2BPF, are cut on. Black regions denote the cut-on range with swirl included, grey
regions denote the no-swirl range. (b) Amplitudes of the pressure coefficients p̂m̂s for m̂= 2,
with swirl (black circles) and without swirl (grey diamonds).

and Elhadidi & Atassi (2002) also concluded that spanwise modulation of the incident
disturbance can lead to a reduction in the acoustic sound propagation.

In order to demonstrate the significance of including swirl, several comparisons
with a non-swirling flow have been carried out. Figure 7(a) compares the extent to
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Figure 8. (a) Variation of total pressure field, Pm(x = 0), with blade thickness (angle of
attack l∞ = 4◦) at 2BPF. Solid lines are the contribution from m̂ = 2, and dashed lines are the
contribution from m̂ = −48. The bold lines are the results with swirl, thin lines are the no-swirl
results. (b) Total pressure field Pm(x = 0) for m= 1, . . . , 4 with swirl included (black bars) and
without swirl (grey bars), (thickness = 15%, l∞ = 4◦).

which the cascade mode orders n= 1 and n= 2 at the second harmonic frequency
are cut on (these generate the azimuthal mode orders m̂ = 2 and m̂= −48 of the
dominant 2BPF tone). Swirl is seen to have a large influence in both cases, with
the n= 1 mode cut on over a smaller range of radii, and the n= 2 mode cut on
over a larger proportion of the span than in the absence of swirl. This effect can
be related to the orientation of the waves relative to the swirl. It is known that
in the duct, azimuthal modes co-rotating with the swirl (m̂ > 0) tend to be cut off
by swirl, and those which are counter-rotating (m̂ < 0) tend to be cut on by swirl.
In the above example, the n=1 cascade mode corresponds to a co-rotating duct
mode, and the n= 2 cascade mode corresponds to a counter-rotating duct mode.
Figure 7(b) compares the duct pressure coefficients, p̂m̂s , determined from (90), when
m̂ = 2. Again, significant differences arise with the inclusion of swirl with the order, s,
of the dominant radial mode (in this case) increasing when swirl is included. Figure 8
considers how swirl affects the final measure of noise, by comparing the values of
the total averaged pressure field Pm(x = 0). In figure 8(a), the relative contributions
to the dominant 2BPF mode (from m̂ =2 and m̂= −48) are compared. In both cases,
the levels predicted when swirl is not included are significantly less than when the
swirl is accounted for. In figure 8(b), results are presented for the first four harmonic
frequencies. Noise levels predicted in the absence of swirl all lie far below the swirling
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flow results. Of particular interest is the prediction of zero upstream-radiated noise
at 1BPF (m̂ = −24). This is because there are no acoustic duct modes cut on in
the absence of swirl and so no contribution to the far-field noise, whereas there are
three cut-on modes which contribute to the noise when swirl is included. A second
feature is that, in the absence of swirl, the largest contribution comes from the 3BPF
response.

These results show that the effects of swirl influence the whole of the rotor–stator
interaction process. Swirl affects the wake evolution, bringing about the wake-skewing,
which then determines the nature of the waves impinging on the cascade. The input
to the cascade determines the acoustic response and the cut-on conditions of the
radiated modes. The cut-on conditions for the duct acoustic modes are also affected
heavily by swirl. The final measure of the noise, the total averaged pressure field, is
affected through the matching of the two pressure fields and by the changes to the
duct eigenmodes.

5. Asymptotic approximation to radiated acoustic field
The determination of eigenvalues and eigenvectors and the calculation of the

radiated pressure field in swirling flow involves considerable numerical evaluation
for each harmonic frequency. In a similar manner to that used for the evolution
of the rotor wake, asymptotic techniques can be applied to the equations governing
the pressure-dominated modes since, in general, the azimuthal order (m̂) of these
modes is large. The asymptotic structure of these modes will be described in § 5.1.
Further asymptotic techniques can be applied to the integrals in (92), which allows
the dominant contributions to the sound field, together with trends and scaling laws
to be identified, and this will be described in § 5.2.

5.1. Large m̂ description of radiation modes

Following the suggestion of Envia (1998), an asymptotic approximation for the nearly
sonic modes using the WKB method is now developed. The vortical and potential
parts of the velocity field can be written as the modal decompositions

u(x, r, θ, t) =

∞∑
s=1

Am̂s(r)exp(i{m̂k−
m̂sx + m̂θ − ωt}), (95)

Φ(x, r, θ, t) =

∞∑
s=1

φm̂s(r)exp(i{m̂k−
m̂sx + m̂θ − ωt}), (96)

where ω =mΩF . The modal amplitudes Am̂s, φm̂s are taken to be O(1), so that the
leading-order contribution to the total unsteady velocity field comes from ∇Φ . Under
the assumption of large m̂, the equation governing the potential becomes, to leading
order,

d2φm̂s

dr2
= −m̂2f (r)φm̂s, (97)

where f = (Λ2
m̂s/c

2
0 − 1/r2 − k−

m̂s

2), with Λm̂s = k−
m̂sU − mΩF /m̂ + W/r . Note that the

pressure eigenfunction in § 3 is given by Lm̂s = −iρ0Λm̂sφm̂s .
The solution to (97) depends on the sign of f , and the possibility that there exist

turning points, where f = 0, needs to be considered. For example, suppose that f < 0
for rh � r < c and f > 0 for c < r � 1, with f (c) = 0. Then, away from the turning
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point, the potential is given by the WKB solution

φm̂s =
α1

m̂1/2(−f )1/4
{exp(m̂w1(r)) + exp(−m̂w1(r))}, rh � r < c, (98)

φm̂s =
γ1

m̂1/2(f )1/4
{exp(im̂w2(r)) + exp(−im̂w2(r))}, c < r � 1, (99)

where α1 and γ1 are constants and

w1(r) =

∫ r

rh

√
−f (ξ ) dξ, w2(r) =

∫ 1

r

√
f (ξ ) dξ. (100)

The solutions in equations (98) and (99) satisfy the leading-order boundary conditions
dφm̂s/dr = 0 at r = rh, 1.

In the vicinity of the turning point, using the substitution y = r − c, (97) becomes
Airy’s equation

d2φm̂s

dy2
+ m̂2f ′(c)yφm̂s = 0, (101)

which has solution

φm̂s = AAi
(
−m̂2/3f ′(c)1/3y

)
+ BBi

(
−m̂2/3f ′(c)1/3y

)
, (102)

with A and B constants to be determined. The unknown eigenvalues, k−
m̂s , and the

constants in each of the three solution regions can be identified using matched
asymptotic expansions. The eigenvalues are then determined from the condition

2m̂w2(c) −
(
2s + 1

2

)
π + 2ψ = 0, s = 0, 1, 2, . . . (103)

where tan ψ = exp{−2m̂w1(c)}/2. The integer n labels the infinite spectrum of axial
eigenvalues for a given m̂, and corresponds to the usual radial order. Similar results
can be obtained if f > 0 for rh � r < c and f < 0 for c < r � 1.

The eigenvalues and corresponding eigenfunctions have been determined using the
above asymptotics for m̂ = −48 and, in order to test the range of validity of the
large-m̂ assumption, for m̂= 2. Results are plotted in figure 9, and good agreement
is obtained. For m̂= −48, the eigenmode shown in figure 9(b) has a turning point at
r ≈ 0.584, while for m̂ =2 there is no turning point, and the WKB approximation to
the eigenfunction takes the oscillatory form (99) everywhere between the hub and the
tip.

A useful way of visualizing the mode structure is to consider the ray paths. In the
oscillatory part of the WKB approximation (99), the mode is written as the sum of
components exp(iΘ±), where the phase is

Θ± = m̂k−
m̂sx + m̂θ ± m̂w2(r), (104)

so that for each point in space where the solution is oscillatory there are two ray
directions, parallel to ∇Θ±. These rays propagate along the duct in a helical manner.
For cases in which the inner or outer (rigid) wall lies in an oscillatory region, the
rays are reflected from that wall, with for instance at the outer wall, the radially
outward-going ray associated with ∇Θ+ being reflected into the radially inward-going
ray associated with ∇Θ−. At a turning point, r = c say, it is easy to check that the
radial component of ∇Θ± is zero, corresponding to the circle r = c being the circular
ray envelope, or caustic.

In the case of zero swirl and uniform axial flow, as studied by Chapman (1994),
if a caustic is present between the inner and outer walls, then it must necessarily
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Figure 9. Asymptotic approximation for acoustic modes in swirling flow. (a) Eigenvalues for
m̂= −48. Circles denote numerical values and the lines plot the function on the left-hand
side of (103) for different values of s. The asymptotic approximation corresponds to the point
where the lines cross zero. (b) Eigenfunction for the (s = 4) eigenmode denoted by the filled
circle in (a); ----, asymptotic approximation; ---, numerical solution. (c) As for (a) but with
m̂= 2. (d ) As for (b) but with m̂ = 2, s = 6.

delineate an oscillatory region outboard, which extends all the way to the outer wall,
from a ‘quiet’ region inboard where there are no rays. In the quiet region, the WKB
solution takes the real-exponential form (98). In the oscillatory region, the individual
ray paths are straight lines, which, on reflection by the outer wall, form what is termed
by Chapman a ‘piecewise linear helix’ winding along the duct. However, when swirl
and radially varying mean axial flow are considered, a richer variety of behaviour
can be found. Four such possibilities are plotted in figure 10, where the projections
of the ray directions onto planes of constant x (i.e. directions given by the radial
and tangential components of ∇Θ±) are plotted. In each of these, the rays are no
longer straight lines, owing to the radial variation of the mean flow. In figure 10(a)
(m̂= −48, s =0), there are, in fact, two turning points between the inner and outer
walls, and the rays are constrained to lie between these two radii without ever reaching
the walls. In figure 10(b) (m̂ = −48, s =4), there is a single turning point, and the rays
form a pattern analogous to the Chapman case, with a single inner quiet zone and
rays reflected off the outer wall. In figure 10(c) (m̂ = 2, s = 3), again there is a single
turning point between the inner and outer walls, but now the quiet zone lies outside
the single caustic cylinder, while in figure 10(d ) (m̂ =2, s =7), there is no turning point
between the inner and outer walls and the rays propagate through the whole of the
annulus.
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Figure 10. Projection of ray paths onto planes of constant x for acoustic modes in swirling
flow. Dashed lines denote ray caustics which delineate oscillatory regions from ‘quiet’ regions.
(a) m̂ = −48, s = 0, (b) m̂= −48, s = 4, (c) m̂= 2, s =3, (d ) m̂= 2, s = 7.

It is clear that the sign of f (r) determines whether or not real rays are found at a
given radius. In the Chapman (1994) case of U (r) = U0 and zero swirl, it follows that
f (r) is a monotonically increasing function of r . The oscillatory WKB solution (99)
can then only occur if

f (∞) ≡ (kU0 − mΩF /m̂)2

C2
0

− k2 > 0, (105)

and if this is the case there must then be a single caustic located at a finite value of
r . The condition f (∞) > 0 corresponds to the condition for a plane sound wave with
axial wavenumber k to be able to propagate in the uniform axial flow, and is exactly
what is to be expected since, as r → ∞, the effects of the azimuthal wavenumber m̂

must disappear.
When W �= 0 and U = U (r), a more complicated variation of f (r) emerges since

it is no longer necessary for f to be a monotonic function of r . In this example, the
logarithmic term introduced into the expression for U (r) in order to enforce uniform
stagnation enthalpy only makes sense in a strictly annular duct. However, it can be
seen that f → +∞ as r → 0, while for r �= 0, f may change sign a number of times. In
the case shown in figure 10(a), f (1) < 0 and there are two caustics (lying within the
annulus) with rays confined away from the walls. This sort of structure arises from
the combination of the swirl and a radially dependent axial flow.
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Figure 11. (a) Dominant contributions to total pressure field at 2BPF (bold line, m̂ =2)
and 3BPF (thin line, m̂ = 28) as rotor–stator separation is increased. (b) Solid lines shows
cascade cut-on boundaries as a function of rotor–stator separation and dashed lines show
stationary-phase points for the highest radial-order acoustic mode.

5.2. Dominant contribution to modal amplitudes in rotor–stator interaction calculation

This section deals with approximating the integrals in (92). In cases in which the
eigenmode Lm̂q(r, x) is oscillatory, i.e. takes the propagating-ray form (99), the integral
Qq can be approximated using the method of stationary phase when m̂ and m are
large. It is easy to see that such a stationary-phase point satisfies mkrxs = ±

√
f ,

corresponding to the case in which the radial phase speed of the incident wake
disturbance matches the radial phase speed of either the radially outward or inward
wave in the acoustic eigenfunction. If there exists a single stationary-phase point
within the annulus then Qq = O(1/m̂), while if no stationary points exist then Qq can
be approximated using integration by parts to yield Qq =O(1/m̂3/2). Note also that
the stationary phase analysis can also be completed in cases when m̂ is not large, as
long as the incident azimuthal order m is large. In this case, the right-hand side of
the WKB equation (97) is O(m2).

This analysis can be used to explain the behaviour in figure 6, where, as the rotor–
stator gap is increased, the total acoustic pressure response generally increases before
falling rapidly to zero. With increasing rotor–stator separation, the incident wake
becomes increasingly distorted and the response for each m̂ becomes dominated by
the behaviour of the highest radial-order acoustic mode. Stationary-phase points have
been calculated for the highest radial order when m̂ = 2 (the dominant contribution
to the 2BPF response) and m̂ = 28 (the dominant contribution to the 3BPF response)
and these are plotted in figure 11 together with the cut-on boundaries determined by
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the cascade response. When m̂ = 2, the acoustic pressure response shows an increase
with the onset of a second stationary-phase point at the tip, at xs ≈ 0.55. The two
stationary-phase points then approach each other on the radius as xs is increased
further, leading to a reduction in noise as their two contributions interfere with each
other. Once the two stationary points approach very close to each other, the noise
rises again, and there is a peak around xs ≈ 0.64 close to the point of coalescence. The
presence of this peak is explained mathematically by noting that the close proximity
and coalescence of two stationary-phase points is described by an Airy function of
the form Ai(−m̂2/3R), where R is proportional to the radial separation of the two
stationary-phase points. This Airy function then has its maximum value at m̂2/3R ≈ 1,
i.e. for large m̂ just before the stationary-phase points coalesce.

Once the stationary points have coalesced they move into the complex r-plane, and
Qq is then approximated by integration by parts to yield a smaller result. In addition
to this, the portion of the radius over which the local cascade emits cut-on radiation
shrinks, resulting in a rapid fall in the pressure response which becomes zero when
the rotor–stator separation lies beyond the cascade cut-on region (xs ≈ 0.67). Similar
behaviour can be seen in figure 11 for m̂= 28. In some other cases, not shown, the
acoustic response can increase for xs beyond the location where the two stationary-
phase points coalesce, and this can be attributed to the size of the local cascade
radiation, which is known to increase sharply close to cut-off.

6. Summary
An analytically based model has been developed to study and predict rotor–stator

interaction noise in aeroengines, in particular upstream-radiated noise. The three-
dimensional cylindrical duct geometry used to represent the aeroengine is retained
throughout and coupled to a local linear cascade model for the stator.

An asymptotic analysis which exploits the large rotor blade number is used to
determine the downstream evolution of the rotor wake in mean swirling flow. In
the presence of swirling flow, the wake becomes distorted by centrifugal and Coriolis
forces as it propagates downstream, and under this asymptotic treatment the equations
governing the wake evolution can be simplified in the main body of the flow to three
coupled first-order differential equations in x, where r appears only as a parameter.
Close to the boundaries, a correction to this solution is required in order to satisfy the
flow boundary conditions. It is shown that the wake becomes increasingly skewed as it
propagates downstream and the degree of distortion is governed by the development
of a radial wavenumber, xmkr (r), so that kr (r) determines the extent of rotation at
each radius.

Once the wake is evolved as far as the stator, a cascade calculation determines the
amount of forward radiation produced by each incident harmonic wave. The cascade
response is formulated in terms of plane-wave modes and this information can be
used to determine the upstream-radiated pressure field across the whole annulus just
ahead of the stator. The effects of the mean swirl on the cascade response have been
included asymptotically, and, in particular, it has been shown how the non-swirling
results of Evers & Peake (2002) can be applied here as well. The cascade pressure field
is then reconstructed in terms of cylindrical duct modes in mean swirling flow. The
matching of pressure fields handles the way in which the cascade cut-on condition
differs from that in an annulus; the cascade cut-on condition determines which cascade
modes propagate just upstream of the cascade, while the annular cut-on condition
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determines which parts of the radiation escaping the cascade propagate upstream in
three dimensions.

The cascade model allows for the effects of stator blade geometry to be investigated.
Results show that for uncambered blades, thickness and angle of attack tend to
increase the amount of radiated noise. For cambered blades there is significant
variation across a range of blade cambers. The results also show that the largest-
amplitude incident wave does not necessarily produce the largest contribution to the
total acoustic field. Each response depends on the relative contribution from each
azimuthal order generated and this is governed in part by the number of stator blades.
It is also shown that, as the rotor–stator separation is increased, each m̂ contribution
becomes cut off at critical separations determined from the analysis, leading ultimately
to significant reductions in noise. In practice, it may not be possible to locate the stator
at sufficiently large distances from the rotor owing to design and weight constraints.
The results from this investigation suggest that an alternative to increasing the rotor
separation as a means of reducing the interaction noise would be to force the wake
to be more skewed initially.

Finally, asymptotic analysis on the acoustic field in swirling flow based on
large azimuthal order was considered. Approximate solutions for eigenvalues and
eigenvectors were determined and good agreement with numerical results was
obtained. The ray structure of the acoustic modes in a mean swirling flow is found
to provide an even richer variety of behaviour than the results for uniform flow
studied by Chapman (1994). For instance, in some circumstances the acoustic mode
is trapped between caustics away from the walls, so that application of acoustic wall
lining designed to attenuate the sound would presumably be ineffective in such a
case. Further asymptotic analysis indicates that dominant contributions to the total
pressure field come from stationary-phase points in the integrals, and may also explain
the increase in acoustic response prior to cut-off.

In summary, the analysis presented in this paper describes a scheme which allows
for the systematic prediction of the effects of stator-blade geometry and swirl on
forward-radiated rotor–stator interaction noise. Various asymptotic analyses are used
to identify general trends in rotor wake evolution and the acoustic response.

A. J. C. acknowledges the financial support provided by The Royal Society. The
authors are also very grateful to Professor E. J. Kerschen for many helpful discussions
and to Dr I. Evers for providing numerical code for the cascade calculation.

Appendix. Evolution equations for mean potential flow
For a potential mean flow in a uniform duct, the leading-order terms in (6) governing

the vortical part of the disturbance become

U
∂ax

∂x
= 0, (A 1)

U
∂ar

∂x
− 2W

r
aθ = 0, (A 2)

U
∂aθ

∂x
= 0, (A 3)

which has solution

ax(x, r) = ax(0, r), (A 4)
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ar (x, r) =
2Wx

Ur
aθ + ar (0, r), (A 5)

aθ (x, r) = aθ (0, r), (A 6)

with the potential defined by (19).
A boundary-layer correction is also required in this case, but the boundary

conditions can be satisfied by a correction to the potential only, which is governed
by the equation

∂2φ̂1

∂R2
± 2ixkr

∂φ̂1

∂R
− λ2φ̂1 = 0, (A 7)

where ± refers to the inner and outer boundaries, respectively. The solution is

φ̂1(x, R) = f (x) exp{−α(x)R} where α(x) = ∓ixkr (rb) ±
√

1

r2
b

+ k2. (A 8)

The amplitude f (x) is determined by the wall boundary condition, and is given by

f (x) = ±{ar (x, rb) + ixkr (rb)φ1(x, rb)}
α(x) ∓ ixkr (rb)

. (A 9)
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